martes, 4 de noviembre de 2008

EL RNA


El ácido ribonucleico (ARN o RNA) es un ácido nucleico formado por una larga cadena de nucleótidos. Se ubica en las células de tipo procariota y las de tipo eucariota. El ARN se define también como un material genético de ciertos virus (virus ARN) y, en los organismos celulares, molécula que dirige las etapas intermedias de la síntesis proteica. En los virus ARN, esta molécula dirige dos procesos: la síntesis de proteínas (producción de las proteínas que forman la cápsula del virus) y replicación (proceso mediante el cual el ARN forma una copia de sí mismo). En los organismos celulares es otro tipo de material genético, llamado ácido desoxirribonucleico (ADN), el que lleva la información que determina la estructura de las proteínas. Pero el ADN no puede actuar solo, y se vale del ARN para transferir esta información vital durante la síntesis de proteínas (producción de las proteínas que necesita la célula para sus actividades y su desarrollo). Como el ADN, el ARN está formado por una cadena de compuestos químicos llamados nucleótidos. Cada uno está formado por una molécula de un azúcar llamado ribosa, un grupo fosfato y uno de cuatro posibles compuestos nitrogenados llamados bases: adenina, guanina, uracilo y citosina. Estos compuestos se unen igual que en el ácido desoxirribonucleico (ADN). El ARN se diferencia químicamente del ADN por dos cosas: la molécula de azúcar del ARN contiene un átomo de oxígeno que falta en el ADN; y el ARN contiene la base uracilo en lugar de la timina del ADN. El ARN es transcrito desde el ADN por enzimas llamadas ARN polimerasas y procesado en el transcurso por muchas más proteínas. El uracilo, aunque es muy diferente, puede formar puentes de hidrógeno con la adenina, lo mismo que la timina lo hace en el ADN. El porqué el ARN contiene uracilo en vez de timina es actualmente una pregunta sin respuesta.

El Big Bang


Durante casi todo el transcurso de la historia de la Física y de la Astronomía modernas no hubo fundamentos adecuados, de observación y teóricos, sobre los cuales construir una historia del Universo primitivo. Desde mediados de la década del ‘60, todo esto ha cambiado. Se ha difundido la aceptación de una teoría sobre el Universo primitivo que los astrónomos suelen llamar “el modelo corriente”. Es muy similar a lo que a veces se denomina la teoría del Big Bang o “Gran explosión”, pero complementada con indicaciones mucho más específicas sobre el contenido del Universo. Si escuchamos el silbato de un tren que se aleja rápidamente, su silbido nos parecerá más grave que si el tren estuviera quieto. El sonido parece tener una mayor longitud de onda cuando el tren se aleja. Esta situación corresponde al fenómeno señalado primeramente por Johann Doppler en 1842. De la misma manera, la luz de una fuente que se aleja es percibida como si tuviese una longitud mayor: si el color original fuera naranja, la luz se percibiría más rojiza. Esto se llama “corrimiento hacia el rojo” y es una manifestación del efecto Doppler en las ondas luminosas. Ciertos análisis de la luz proveniente de estrellas y galaxias muestran que, en la inmensa mayoría de los casos, hay un corrimiento hacia el rojo. Esto puede explicarse suponiendo un Universo en expansión en el que cada galaxia se aleja de las otras; como si fuese el resultado de algún género de explosión. A mediados de los años ‘60, A. Penzias y R. Wilson detectaron ondas de radio de longitudes cercanas a los 10 cm (microondas), procedentes del espacio exterior con una particularidad singular. La intensidad de estas señales era la misma independientemente de la dirección en que se situara la antena. Por lo tanto, no podían ser adjudicadas a ninguna estrella, galaxia o cuerpo estelar en particular. Estas microondas parecían llenar todo el espacio y ser equivalentes a la radiación emitida por un cuerpo negro a 3K. Los astrofísicos teóricos comprendieron que esta “radiación cósmica de fondo de microondas” era compatible con la suposición de que en el pasado el Universo era muy denso y caliente. En el comienzo hubo una explosión. No como las que conocemos en la Tierra, que parten de un centro definido y se expanden hasta abarcar una parte más o menos grande del aire circundante, sino una explosión que se produjo simultáneamente en todas partes, llenando desde el comienzo todo el espacio y en la que cada partícula de materia se alejó rápidamente de toda otra partícula. “Todo el espacio”, en este contexto, puede significar, o bien la totalidad de un Universo infinito, o bien la totalidad de un Universo finito que se curva sobre sí mismo como la superficie de una esfera. Ninguna de estas posibilidades es fácil de comprender, pero esto no debe ser un obstáculo; en el Universo primitivo, importa poco que el espacio sea finito o infinito. Al cabo de un centésimo de segundo aproximadamente, que es el momento más primitivo del que podemos hablar con cierta seguridad, la temperatura fue de unos cien mil millones (1011) de grados centígrados. Se trata de un calor mucho mayor aún que el de la estrella más caliente, tan grande, en verdad, que no pueden mantenerse unidos los componentes de la materia ordinaria: moléculas, átomos, ni siquiera núcleos de átomos. En cambio, la materia separada en esta explosión consistía en diversos tipos de las llamadas partículas elementales, que son el objeto de estudio de la moderna Física nuclear de altas energías. Un tipo de partícula presente en gran cantidad era el electrón, partícula con carga negativa que fluye por los cables transportadores de corriente eléctrica y constituye las partes exteriores de todos los átomos y moléculas del Universo actual. Otro tipo de partículas que abundaban en tiempos primitivos era el positrón, partícula de carga positiva que tiene la misma masa que el electrón. En el Universo actual, sólo se encuentran positrones en los laboratorios de altas energías, en algunas especies de radiactividad y en los fenómenos astronómicos violentos, como los rayos cósmicos y las supernovas; pero en el Universo primitivo el número de positrones era casi exactamente igual al número de electrones. Además de los electrones y los positrones, había cantidades similares de diversas clases de neutrinos, fantasmales partículas que carecen de masa y carga eléctrica. Finalmente, el Universo estaba lleno de fotones de luz. Estas partículas eran generadas continuamente a partir de la energía pura, y después de una corta vida, eran aniquiladas nuevamente. Su número, parlo tanto, no estaba prefijado, sino que lo determinaba el balance entre los procesos de creación y de aniquilamiento.

Emigracion y Migracion


Migración animal: Desplazamientos periódicos, estacionales o permanentes de especies animales de un hábitat a otro. Los movimientos migratorios (migración) presentan dos enfoques: el de la emigración, desde el punto de vista del lugar donde sale la población; y el de la inmigración, desde el punto de vista del lugar donde llegan los "migrantes".Por ultimo te puedo aportar que hoy en dia hay movimientos migratorios forzados, debido al cambio climatico y a la irracionalidad del hombre con los habitat naturales de las especies. Esto se da por eejmplo, en la selva amazonica debido a la deforestación de la misma.Despues hay movimientos migratorios de las aves, los cuales se dan debido a los cambios estacionales. Estos no son forzados por el hombre y mas bien corresponden a un ciclo de supervivencia de las especies en cuestion. Emigracion es cuando el animal va a otro reino dentro de su terriotorio a buscar presas, inmigracion es cuando el animal se sobre pasa de su terriotorio a buscar presas.

ECOSISTEMAS


martes, 28 de octubre de 2008

Especiacion


Desde un punto de vista biológico, una especie es un grupo de poblaciones naturales cuyos miembros pueden cruzarse entre sí y producir descendencia fértil, pero no pueden hacerlo (o no lo hacen en circunstancias normales) con los integrantes de poblaciones pertenecientes a otras especies. Por tanto, desde un punto de vista genético, se define la especie como la unidad reproductiva, es decir, el conjunto de individuos con capacidad de producir descendencia fértil por cruzamiento entre sus miembros.
Cualquiera que sea el parecido fenotípico entre un grupo de individuos, si los apareamientos entre ellos no produce descendientes (que es lo más habitual) o sólo producen descendientes estériles (como es el caso, por ejemplo, del cruce entre caballos y burros) podemos afirmar que pertenecen a especies diferentes. En algunos casos, cuando las especies que cruzan se han separado hace pocas generaciones (en términos evolutivos), el cruce entre ellas puede que sólo sea estéril en una determinada dirección o que sólo produzca hijos de un determinado sexo (como es el caso del cruce entre las especies Drosophila melanogaster y Drosophila simulans)
Desde una perspectiva evolutiva, las especies son grupos de organismos reproductivamente homogéneos, en un tiempo y espacio dados, pero que sufren transformaciones con el paso del tiempo o la diversificación espacial. Como consecuencia de estos cambios, las especies sufren modificaciones y se transforman en otras especies o bien se subdividen en grupos aislados que pueden convertirse en especies nuevas, diferentes de la original.
Se conoce como especiación al proceso mediante el cuál una población de una determinada especie da lugar a otra u otras poblaciones, asiladas reproductivamente de la población anterior y entre sí, que con el tiempo irán acumulando otras diferencias genéticas. El proceso de especiación, a lo largo de 3.800 millones de años, ha dado origen a una enorme diversidad de organismos, millones de especies de todos los reinos, que han poblado y pueblan la la Tierra casi desde el momento en que se formaron los primeros mares.

Poliploidia




La poliploidía es un incremento del número de cromosomas característico del complemento diploide; por ejemplo, la no disyunción de los cromosomas en la meiosis lleva a la aparición de individuos (4n), los cuales estarán aislados reproductivamente de la especie, a pesar de poder reproducirse sexualmente. La poliploidía se produce por irregularidades de la meiosis: en la primera división (profase), cuando los cromosomas homólogos se aparean para formar tétradas, y no se separan durante la anafase I; esto origina una célula con todo el complemento cromosómico y la otra con ninguno, donde la primera pasa por la segunda división meiótica y produce gametos diploides. Por lo tanto si este gameto se une con otro normal producirá un cigoto triploide (estéril). Por su origen los poliploides pueden ser:
-Autopoliploides: derivados de un sólo
diploide por multiplicación de sus cromosomas.
-Alopoliploides derivados de un híbrido entre dos diploides.

Ecosistemas


El ecosistema es la unidad de trabajo, estudio e investigación de la Ecología. Es un sistema complejo en el que interactúan los seres vivos entre sí y con el conjunto de factores no vivos que forman el ambiente: temperatura, sustancias químicas presentes, clima, características geológicas, etc. La ecología estudia a la naturaleza como un gran conjunto en el que las condiciones físicas y los seres vivos interactúan entre sí en un complejo entramado de relaciones. En ocasiones el estudio ecológico se centra en un campo de trabajo muy local y específico, pero en otros casos se interesa por cuestiones muy generales. Un ecólogo puede estar estudiando como afectan las condiciones de luz y temperatura a las encinas, mientras otro estudia como fluye la energía en la selva tropical; pero lo específico de la ecología es que siempre estudia las relaciones entre los organismos y de estos con el medio no vivo, es decir, el ecosistema.

-Tipos de ecosistemas:

-Medios acuáticos: En los medios acuáticos los problemas principales son el abastecimiento de oxígeno (O2) y la disminución de la luz a medida que aumenta la profundidad (hasta llegar a la falta total de iluminación en las profundidades marinas), y también a una escasez relativa de nutrientes, o de la posibilidad de acceder a ellos. Por otra parte, en estos ecosistemas la influencia del clima es mucho menor, ya que las características propias del agua amortiguan las diferencias de temperatura.
-Medios aéreos o terrestres: En los medios aéreos los principales problemas son la escasez del agua y también la obtención de nutrientes: el aire no es un medio que pueda contener las sustancias necesarias para la vida. Los organismos que habitan los medios aéreos se ven obligados a buscar los nutrientes en el sustrato sólido, en el suelo. Esto hace que se vean ligados al suelo de forma irremediable para la obtención del sustento. Por ello a este tipo de ecosistemas se los puede llamar también terrestres, ya que si bien el medio fluido es el aire, encuentran el alimento en la tierra.